Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
OMICS ; 28(2): 45-48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285484

RESUMO

Climate emergency is a planetary health and systems science challenge because human health, nonhuman animal health, and the health of the planetary ecosystems are coproduced and interdependent. Yet, we live in a time when climate emergency is tackled by platitudes and weak reforms instead of structural and systems changes, and with tools of the very same systems and metanarratives, for example, infinite growth at all costs, that are causing climate change in the first place. Seeking solutions to problems from within the knowledge frames and metanarratives that are causing the problems reproduces the same problems across time and geographies. This article examines and underlines the importance of an epistemological gaze on knowledge economy, an epistemological X-ray, as another solution in the toolbox of decolonial and other social justice struggles in an era of climate emergency. Epistemology questions and excavates the metanarratives embedded in knowledge forms that are popular, dominant, and hegemonic as well as knowledges that are silent, omitted, or erased. In this sense, epistemology does not take the "archives" of data and knowledge for granted but asks questions such as who, when, how, and with what and whose funding the archive was built, and what is included and left out? Epistemological choices made by innovators, funders, and knowledge actors often remain opaque in knowledge economies. Epistemology research is crucial for science and innovations to be responsive to planetary society and climate emergency and mindful of the social, political, neocolonial, and historical contexts of science and technology in the 21st century.


Assuntos
Ecossistema , Conhecimento , Animais , Humanos , Raios X , Justiça Social , Tecnologia
4.
OMICS ; 24(8): 460-469, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511054

RESUMO

"The pandemic is a portal." In the words of the novelist scholar Arundhati Roy, the COVID-19 pandemic is not merely an epic calamity. It has opened up a new space, a portal, to rethink everything, for example, in how we live, work, produce scientific knowledge, provide health care, and relate to others, be they humans or nonhuman animals in planetary ecosystems. Meanwhile, as the intensity of the pandemic escalates, digital health tools such as the Internet of Things (IoT), biosensors, and artificial intelligence (AI) are being deployed to address the twin goals of social distancing and health care in a "no touch" emergency state. Permanent integration of digital technologies into every aspect of post-pandemic civic life-health care, disease tracking, education, work, and beyond-is considered by governments and technology actors around the world. Although digital transformation of health care and industry are in the works, we ought to ensure that digital transformation does not degenerate into "digitalism," which we define here as an unchecked and misguided belief on extreme digital connectivity without considering the attendant adverse repercussions on science, human rights, and everyday practices of democracy. Indeed, the current shrinking of the critically informed public policy space amid a devastating pandemic raises principled questions on the broader and long-term impacts that digital technologies will have on democratic governance of planetary health and society. To this end, a wide range of uncertainties-technical, biological, temporal, spatial, and political-is on the COVID-19 pandemic horizon. This calls for astute and anticipatory innovation policies to steer the health sciences and services toward democratic ends. In this article, we describe new and critically informed approaches to democratize COVID-19 digital health innovation policy, especially when the facts are uncertain, the stakes are high, and decisions are urgent, as they often are in the course of a pandemic. In addition, we introduce a potential remedy to democratize pandemic innovation policy, the concept of "epistemic competence," so as to check the frames and framings of the pandemic innovation policy juggernaut and the attendant power asymmetries. We suggest that if epistemic competence, and attention to not only scientific knowledge but also its framing are broadly appreciated, they can help reduce the disparity between the enormous technical progress and investments made in digital health versus our currently inadequate understanding of the societal dimensions of emerging technologies such as AI, IoT, and extreme digital connectivity on the planet.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Política de Saúde , Pneumonia Viral/epidemiologia , Vigilância em Saúde Pública/métodos , Tecnologia , COVID-19 , Infecções por Coronavirus/virologia , Humanos , Conhecimento , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
5.
OMICS ; 22(3): 184-189, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431577

RESUMO

Diversity is increasingly at stake in early 21st century. Diversity is often conceptualized across ethnicity, gender, socioeconomic status, sexual preference, and professional credentials, among other categories of difference. These are important and relevant considerations and yet, they are incomplete. Diversity also rests in the way we frame questions long before answers are sought. Such diversity in the framing (epistemology) of scientific and societal questions is important for they influence the types of data, results, and impacts produced by research. Errors in the framing of a research question, whether in technical science or social science, are known as type III errors, as opposed to the better known type I (false positives) and type II errors (false negatives). Kimball defined "error of the third kind" as giving the right answer to the wrong problem. Raiffa described the type III error as correctly solving the wrong problem. Type III errors are upstream or design flaws, often driven by unchecked human values and power, and can adversely impact an entire innovation ecosystem, waste money, time, careers, and precious resources by focusing on the wrong or incorrectly framed question and hypothesis. Decades may pass while technology experts, scientists, social scientists, funding agencies and management consultants continue to tackle questions that suffer from type III errors. We propose a new diversity metric, the Frame Diversity Index (FDI), based on the hitherto neglected diversities in knowledge framing. The FDI would be positively correlated with epistemological diversity and technological democracy, and inversely correlated with prevalence of type III errors in innovation ecosystems, consortia, and knowledge networks. We suggest that the FDI can usefully measure (and prevent) type III error risks in innovation ecosystems, and help broaden the concepts and practices of diversity and inclusion in science, technology, innovation and society.


Assuntos
Biodiversidade , Ecossistema , Invenções , Ciência , Animais , Humanos , Tecnologia
7.
OMICS ; 20(6): 329-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27310474

RESUMO

Healthcare is transforming with data-intensive omics technologies and Big Data. The "revolution" has already happened in technology, but the bottlenecks have shifted to the social domain: Who can be empowered by Big Data? Who are the users and customers? In this review and innovation field analysis, we introduce the idea of a "super-customer" versus "customer" and relate both to 21st century healthcare. A "super-customer" in healthcare is the patient, sample size of n = 1, while "customers" are the providers of healthcare (e.g., doctors and nurses). The super-customers have been patients, enabled by unprecedented social practices, such as the ability to track one's physical activities, personal genomics, patient advocacy for greater autonomy, and self-governance, to name but a few. In contrast, the originally intended customers-providers, doctors, and nurses-have relatively lagged behind. With patients as super-customers, there are valuable lessons to be learned from industry examples, such as Amazon and Uber. To offer superior quality service, healthcare organizations have to refocus on the needs, pains, and aspirations of their super-customers by enabling the customers. We propose a strategic solution to this end: the PPT-DAM (People-Process-Technology empowered by Data, Analytics, and Metrics) approach. When applied together with the classic Experiment-Execute-Evaluate iterative methodology, we suggest PPT-DAM is an extremely powerful approach to deliver quality health services to super-customers and customers. As an example, we describe the PPT-DAM implementation by the Benchmarking Improvement Program at the Seattle Children's Hospital. Finally, we forecast that cognitive systems in general and IBM Watson in particular, if properly implemented, can bring transformative and sustainable capabilities in healthcare far beyond the current ones.


Assuntos
Atenção à Saúde/métodos , Indústrias/métodos , Atenção à Saúde/economia , Atenção à Saúde/organização & administração , Humanos , Indústrias/economia , Indústrias/organização & administração , Enfermeiras e Enfermeiros , Médicos
8.
OMICS ; 19(8): 435-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26161545

RESUMO

Diagnostics spanning a wide range of new biotechnologies, including proteomics, metabolomics, and nanotechnology, are emerging as companion tests to innovative medicines. In this Opinion, we present the rationale for promulgating an "Essential Diagnostics List." Additionally, we explain the ways in which adopting a vision for "Health in All Policies" could link essential diagnostics with robust and timely societal outcomes such as sustainable development, human rights, gender parity, and alleviation of poverty. We do so in three ways. First, we propose the need for a new, "see through" taxonomy for knowledge-based innovation as we transition from the material industries (e.g., textiles, plastic, cement, glass) dominant in the 20(th) century to the anticipated knowledge industry of the 21st century. If knowledge is the currency of the present century, then it is sensible to adopt an approach that thoroughly examines scientific knowledge, starting with the production aims, methods, quality, distribution, access, and the ends it purports to serve. Second, we explain that this knowledge trajectory focus on innovation is crucial and applicable across all sectors, including public, private, or public-private partnerships, as it underscores the fact that scientific knowledge is a co-product of technology, human values, and social systems. By making the value systems embedded in scientific design and knowledge co-production transparent, we all stand to benefit from sustainable and transparent science. Third, we appeal to the global health community to consider the necessary qualities of good governance for 21st century organizations that will embark on developing essential diagnostics. These have importance not only for science and knowledge-based innovation, but also for the ways in which we can build open, healthy, and peaceful civil societies today and for future generations.


Assuntos
Saúde Global/ética , Técnicas de Diagnóstico Molecular/tendências , Inovação Organizacional , Saúde Pública/ética , Biomarcadores/análise , Serviços de Diagnóstico/economia , Serviços de Diagnóstico/ética , Serviços de Diagnóstico/provisão & distribuição , Saúde Global/economia , Saúde Global/tendências , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Farmacogenética/educação , Saúde Pública/economia , Saúde Pública/tendências
10.
OMICS ; 18(7): 415-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24955641

RESUMO

Scholarship knows no geographical boundaries. This science diplomacy and biotechnology journalism article introduces an original concept and policy petition to innovate the global translational science, a Science Peace Corps. Service at the new Corps could entail volunteer work for a minimum of 6 weeks, and up to a maximum of 2 years, for translational research in any region of the world to build capacity manifestly for development and peace, instead of the narrow bench-to-bedside model of life science translation. Topics for translational research are envisioned to include all fields of life sciences and medicine, as long as they are linked to potential or concrete endpoints in development, foreign policy, conflict management, post-crisis capacity building, and/or peace scholarship domains. As a new instrument in the global science and technology governance toolbox, a Science Peace Corps could work effectively, for example, towards elucidating the emerging concept of "one health"--encompassing human, environmental, plant, microbial, ecosystem, and planet health--thus serving as an innovative crosscutting pillar of 21(st) century integrative biology. An interdisciplinary program of this caliber for development would link 21(st) century life sciences to foreign policy and peace, in ways that can benefit many nations despite their ideological differences. We note that a Science Peace Corps is timely. The Intergovernmental Panel on Climate Change (IPCC) of the United Nations released the Fifth Assessment Report on March 31, 2014. Worrisomely, the report underscores that no person or nation will remain untouched by the climate change, highlighting the shared pressing life sciences challenges for global society. To this end, we recall that President John F. Kennedy advocated for volunteer work that has enduring, transgenerational, and global impacts. This culminated in establishment of the Peace Corps in 1961. Earlier, President Abraham Lincoln aptly observed, "nearly all men can stand adversity, but if you want to test a man's character, give him power." We therefore petition President Barack Obama, other world leaders, and international development agencies in positions of power around the globe, to consider deploying a Science Peace Corps to cultivate the essential (and presently missing) ties among life sciences, foreign policy, development, and peace agendas. A Science Peace Corps requires support by a credible and independent intergovernmental organization or development agency for funding, and arbitration in the course of volunteer work when the global versus local (glocal) value-based priorities and human rights intersect in synergy or conflict. In all, Science Peace Corps is an invitation to a new pathway for competence in 21(st) century science that is locally productive and globally competitive. It can open up scientific institutions to broader considerations and broader inputs, and thus cultivate vital translational science in a world sorely in need of solidarity and sustainable responses to the challenges of 21(st) century science and society.


Assuntos
Biotecnologia , Invenções , Pesquisa Translacional Biomédica , África , Humanos , Peace Corps , Pesquisa , Ciência/tendências , Estados Unidos
11.
OMICS ; 18(1): 1-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24456464

RESUMO

Metadata refer to descriptions about data or as some put it, "data about data." Metadata capture what happens on the backstage of science, on the trajectory from study conception, design, funding, implementation, and analysis to reporting. Definitions of metadata vary, but they can include the context information surrounding the practice of science, or data generated as one uses a technology, including transactional information about the user. As the pursuit of knowledge broadens in the 21(st) century from traditional "science of whats" (data) to include "science of hows" (metadata), we analyze the ways in which metadata serve as a catalyst for responsible and open innovation, and by extension, science diplomacy. In 2015, the United Nations Millennium Development Goals (MDGs) will formally come to an end. Therefore, we propose that metadata, as an ingredient of responsible innovation, can help achieve the Sustainable Development Goals (SDGs) on the post-2015 agenda. Such responsible innovation, as a collective learning process, has become a key component, for example, of the European Union's 80 billion Euro Horizon 2020 R&D Program from 2014-2020. Looking ahead, OMICS: A Journal of Integrative Biology, is launching an initiative for a multi-omics metadata checklist that is flexible yet comprehensive, and will enable more complete utilization of single and multi-omics data sets through data harmonization and greater visibility and accessibility. The generation of metadata that shed light on how omics research is carried out, by whom and under what circumstances, will create an "intervention space" for integration of science with its socio-technical context. This will go a long way to addressing responsible innovation for a fairer and more transparent society. If we believe in science, then such reflexive qualities and commitments attained by availability of omics metadata are preconditions for a robust and socially attuned science, which can then remain broadly respected, independent, and responsibly innovative. "In Sierra Leone, we have not too much electricity. The lights will come on once in a week, and the rest of the month, dark[ness]. So I made my own battery to power light in people's houses." Kelvin Doe (Global Minimum, 2012) MIT Visiting Young Innovator Cambridge, USA, and Sierra Leone "An important function of the (Global) R&D Observatory will be to provide support and training to build capacity in the collection and analysis of R&D flows, and how to link them to the product pipeline." World Health Organization (2013) Draft Working Paper on a Global Health R&D Observatory.


Assuntos
Mineração de Dados/estatística & dados numéricos , Disseminação de Informação/ética , Metagenômica/estatística & dados numéricos , Mineração de Dados/economia , Mineração de Dados/tendências , União Europeia , Humanos , Metagenômica/economia , Metagenômica/tendências , Editoração , Projetos de Pesquisa
12.
OMICS ; 18(1): 10-4, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24456465

RESUMO

Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.


Assuntos
Disseminação de Informação/ética , Metagenômica/estatística & dados numéricos , Projetos de Pesquisa/normas , Mineração de Dados , Humanos , Metagenômica/economia , Metagenômica/tendências , Editoração , Reprodutibilidade dos Testes
13.
Per Med ; 11(7): 687-691, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26120345

RESUMO

Vural Özdemir began his career as a medical doctor in Turkey in 1990, as a scientist at the Faculty of Medicine, University of Toronto (ON, Canada), where he obtained his MSc and PhD in clinical pharmacology (1998), and subsequently completed a 4-year postdoctoral fellowship in personalized medicine with the late Werner Kalow, a founding pioneer in the field of pharmacogenetics. Özdemir contributed to the conception and development of the repeated drug administration (RDA) method as a novel way of measuring pharmacological heritability, pharmacogenetics of psychiatric drugs and studying the clinical role of CYP2D6 genetic variations for endogenous neurotransmitter metabolism in the human brain. Recognizing that scientific knowledge is a product of both technology and social systems that often remain unaccounted for (e.g., human values, distribution of power and human agency, immigration, racial disparities, socioeconomic class and equity), Özdemir discovered the literature in the field of science and technology studies, a rich scholarly enquiry that asks fundamental questions and challenges assumptions regarding the backstage of technoscience, situates technology within its political context and makes hitherto unseen connections that frame science in ways that enable robust, responsible and sustainable innovation. From 2008 to 2012, Özdemir was awarded a mid-career "science and society" fellowship in order to retool as independent faculty and senior scientist in science and technology studies (STS), conducting research on research and examining his own trade - pharmacogenetics science - as an insider on the outside. Recently, Özdemir was awarded senior career support from the Scientific and Tehnological Research Council of Turkey, is an Associate Professor of both Communications and Human Genetics at the Faculty of Communications and serves as an advisor to the Rector for International Technology and Innovation Policy, Gaziantep University in Turkey. He is also a Visiting Professor (Global Health & Technology Foresight) at Amrita University in Kerala, India, and cofounder of the Data-Enabled Life Sciences Alliance (DELSA Global), an open innovation and knowledge translation platform in Seattle (WA, USA). Özdemir was named as coinventor of 12 World Intellectual Property Organization (WIPO) indexed patents in personalized medicine and has authored more than 130 peer reviewed articles and chapters on the translation of omics technologies into public health action, global technology governance, diagnostics innovation strategy, history of bioethics and the ethics-of-bioethics. 'Science Peace Corps' and 'Microgrants for Big Data' are two new knowledge translation and science communication concepts developed by Özdemir for the global governance of biotechnology. He is Editor-in-Chief of OMICS: A Journal of Integrative Biology, published by Mary Ann Liebert, Inc. (NY, USA).

14.
OMICS ; 17(4): 161-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23574338

RESUMO

Biomedical science in the 21(st) century is embedded in, and draws from, a digital commons and "Big Data" created by high-throughput Omics technologies such as genomics. Classic Edisonian metaphors of science and scientists (i.e., "the lone genius" or other narrow definitions of expertise) are ill equipped to harness the vast promises of the 21(st) century digital commons. Moreover, in medicine and life sciences, experts often under-appreciate the important contributions made by citizen scholars and lead users of innovations to design innovative products and co-create new knowledge. We believe there are a large number of users waiting to be mobilized so as to engage with Big Data as citizen scientists-only if some funding were available. Yet many of these scholars may not meet the meta-criteria used to judge expertise, such as a track record in obtaining large research grants or a traditional academic curriculum vitae. This innovation research article describes a novel idea and action framework: micro-grants, each worth $1000, for genomics and Big Data. Though a relatively small amount at first glance, this far exceeds the annual income of the "bottom one billion"-the 1.4 billion people living below the extreme poverty level defined by the World Bank ($1.25/day). We describe two types of micro-grants. Type 1 micro-grants can be awarded through established funding agencies and philanthropies that create micro-granting programs to fund a broad and highly diverse array of small artisan labs and citizen scholars to connect genomics and Big Data with new models of discovery such as open user innovation. Type 2 micro-grants can be funded by existing or new science observatories and citizen think tanks through crowd-funding mechanisms described herein. Type 2 micro-grants would also facilitate global health diplomacy by co-creating crowd-funded micro-granting programs across nation-states in regions facing political and financial instability, while sharing similar disease burdens, therapeutics, and diagnostic needs. We report the creation of ten Type 2 micro-grants for citizen science and artisan labs to be administered by the nonprofit Data-Enabled Life Sciences Alliance International (DELSA Global, Seattle). Our hope is that these micro-grants will spur novel forms of disruptive innovation and genomics translation by artisan scientists and citizen scholars alike. We conclude with a neglected voice from the global health frontlines, the American University of Iraq in Sulaimani, and suggest that many similar global regions are now poised for micro-grant enabled collective innovation to harness the 21(st) century digital commons.


Assuntos
Organização do Financiamento , Genômica/economia , Pesquisa Biomédica/economia , Humanos
16.
OMICS ; 16(3): 138-47, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22401659

RESUMO

Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19-20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16-17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org ) was formed to become a Digital Commons for the life sciences community.


Assuntos
Disciplinas das Ciências Biológicas/tendências , Disciplinas das Ciências Biológicas/economia , Disciplinas das Ciências Biológicas/organização & administração , Congressos como Assunto , Estados Unidos , United States Government Agencies/economia , United States Government Agencies/organização & administração , United States Government Agencies/tendências
18.
OMICS ; 15(9): 637-46, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21848419

RESUMO

Vaccinomics is the convergence of vaccinology and population-based omics sciences. The success of knowledge-based innovations such as vaccinomics is not only contingent on access to new biotechnologies. It also requires new ways of governance of science, knowledge production, and management. This article presents a conceptual analysis of the anticipatory and adaptive approaches that are crucial for the responsible design and sustainable transition of vaccinomics to public health practice. Anticipatory governance is a new approach to manage the uncertainties embedded on an innovation trajectory with participatory foresight, in order to devise governance instruments for collective "steering" of science and technology. As a contrast to hitherto narrowly framed "downstream impact assessments" for emerging technologies, anticipatory governance adopts a broader and interventionist approach that recognizes the social construction of technology design and innovation. It includes in its process explicit mechanisms to understand the factors upstream to the innovation trajectory such as deliberation and cocultivation of the aims, motives, funding, design, and direction of science and technology, both by experts and publics. This upstream shift from a consumer "product uptake" focus to "participatory technology design" on the innovation trajectory is an appropriately radical and necessary departure in the field of technology assessment, especially given that considerable public funds are dedicated to innovations. Recent examples of demands by research funding agencies to anticipate the broad impacts of proposed research--at a very upstream stage at the time of research funding application--suggest that anticipatory governance with foresight may be one way how postgenomics scientific practice might transform in the future toward responsible innovation. Moreover, the present context of knowledge production in vaccinomics is such that policy making for vaccines of the 21st century is occurring in the face of uncertainties where the "facts are uncertain, values in dispute, stakes high and decisions urgent and where no single one of these dimensions can be managed in isolation from the rest." This article concludes, however, that uncertainty is not an accident of the scientific method, but its very substance. Anticipatory governance with participatory foresight offers a mechanism to respond to such inherent sociotechnical uncertainties in the emerging field of vaccinomics by making the coproduction of scientific knowledge by technology and the social systems explicit. Ultimately, this serves to integrate scientific and social knowledge thereby steering innovations to coproduce results and outputs that are socially robust and context sensitive.


Assuntos
Medicina Preventiva/legislação & jurisprudência , Vacinação/tendências , Vacinas , Difusão de Inovações , Humanos , Medicina Preventiva/economia , Medicina Preventiva/tendências , Opinião Pública , Vacinação/legislação & jurisprudência
19.
PLoS One ; 5(8): e12203, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20808949

RESUMO

To gauge the current commitment to scientific research in the United States of America (US), we compared federal research funding (FRF) with the US gross domestic product (GDP) and industry research spending during the past six decades. In order to address the recent globalization of scientific research, we also focused on four key indicators of research activities: research and development (R&D) funding, total science and engineering doctoral degrees, patents, and scientific publications. We compared these indicators across three major population and economic regions: the US, the European Union (EU) and the People's Republic of China (China) over the past decade. We discovered a number of interesting trends with direct relevance for science policy. The level of US FRF has varied between 0.2% and 0.6% of the GDP during the last six decades. Since the 1960s, the US FRF contribution has fallen from twice that of industrial research funding to roughly equal. Also, in the last two decades, the portion of the US government R&D spending devoted to research has increased. Although well below the US and the EU in overall funding, the current growth rate for R&D funding in China greatly exceeds that of both. Finally, the EU currently produces more science and engineering doctoral graduates and scientific publications than the US in absolute terms, but not per capita. This study's aim is to facilitate a serious discussion of key questions by the research community and federal policy makers. In particular, our results raise two questions with respect to: a) the increasing globalization of science: "What role is the US playing now, and what role will it play in the future of international science?"; and b) the ability to produce beneficial innovations for society: "How will the US continue to foster its strengths?"


Assuntos
Pesquisa/estatística & dados numéricos , Ciência/estatística & dados numéricos , Governo Federal , Indústrias/economia , Pesquisa/economia , Pesquisa/educação , Apoio à Pesquisa como Assunto , Ciência/economia , Ciência/educação , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA